Interactions of Delta Shock Waves for the Aw-rascle Traffic Model with Split Delta Functions∗
نویسندگان
چکیده
This paper is concerned with the interactions of δ-shock waves for the Aw-Rascle traffic model with split delta functions. The solutions are obtained constructively when the initial data are three piecewise constant states. The global structure and large time-asymptotic behaviors of the solutions are analyzed case by case. Moreover, it can be found that the Riemann solutions are stable for such small perturbations with initial data by studying the limits of the solutions when the perturbed parameter ε→ 0.
منابع مشابه
The Lifetime Behavior of a New Discrete Time Mixed $delta$-shock Model
In this study, a mixed $delta$-shock model with discrete-time is defined by combining $delta$-shock and extreme shock models. In this model, a system with multiple states fails in two ways: first, when k interarrival times between two consecutive shocks with magnitude larger than the critical threshold $gamma$ are in $[delta_1, delta _2], delta_1 < delta _2$; and second, when the interarrival t...
متن کاملMoving bottlenecks for the Aw-Rascle-Zhang traffic flow model
We introduce a second order model for traffic flow with moving bottlenecks. The model consists of the 2×2 Aw-Rascle-Zhang system with a point-wise flow constraint whose trajectory is governed by an ordinary differential equation. We define two Riemann solvers, characterize the corresponding invariant domains and propose numerical strategies, which are effective in capturing the non-classical sh...
متن کاملA Hybrid Lagrangian Model Based on the Aw--Rascle Traffic Flow Model
In this paper, we propose a simple fully discrete hybrid model for vehicular traffic flow, for which both the macroscopic and the microscopic models are based on a Lagrangian discretization of the “Aw-Rascle” (AR) model [3]. This hybridization makes use of the relation between the AR macroscopic model and a Follow-the-Leader type model [15, 22], established in [2]. Moreover, in the hybrid model...
متن کاملExistence of Solutions for the Aw–rascle Traffic Flow Model with Vacuum
We consider the macroscopic model for traffic flow proposed by Aw and Rascle in 2000. The model is a 2×2 system of hyperbolic conservation laws, or, when the model includes a relaxation term, a 2 × 2 system of hyperbolic balance laws. The main difficulty is the presence of vacuum, which makes us unable to control the total variation of the conservative variables. We allow vacuum to appear and p...
متن کاملCar-following and the Macroscopic Aw–rascle Traffic Flow Model
We consider a semi-discrete car-following model and the macroscopic Aw–Rascle model for traffic flow given in Lagrangian form. The solution of the car-following model converges to a weak entropy solution of the system of hyperbolic balance laws with Cauchy initial data. For the homogeneous system, we allow vacuum in the initial data. By using properties of the semi-discrete model, we show that ...
متن کامل